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Abstract 

A topological index is a real number related to the structure of a connected graph G and is invariant under graph 

automorphism. Let G be a (molecular) graph possessing n vertices and m edges, and e=x,y be an edge of G and x, y 

are two of its vertices, then the distance d(x,y)=d(x,y|G) between the vertices x and y is equal to the length of the 

shortest path that connects them in G.  

The goal of this paper is to compute the Schultz Polynomial  
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 and their topological 

indices of first members of a family of hydrocarbon structures “Polycyclic Aromatic Hydrocarbons (PAHs)” molecular 

graph. Copyright © acascipub.com, all rights reserved.  
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Introduction 

Let G=(V,E) a simple finite molecular graph with the vertex set V(G) (the number of vertices |V(G)|=n) and the edge 

set E(G) (the number of vertices |E(G)|=m), such that in the connected molecular graph G, vertices represent atoms and 

edges represent bonds. 

In graph theory, if e is an edge of G, connecting the vertices u and v, then we write e=uv. If G is a connected graph 

and x and y are two of its vertices, then the distance 

d(x,y)=d(x,y|G) between the vertices x and y is equal to the length of the shortest path that connects them in G. Also 

the number of adjacent of vertex v is its degree, which denoted by dv. 

In chemical graph theory, we have invariant polynomials for any graphs, that they have usually integer coefficients. 

A topological index of G is a numeric quantity, derived following certain rules in Chemistry, which can be used to 

characterize the property of molecule. 

Usage of topological indices in Biology and Chemistry began in 1947 when chemist Harold Wiener [1] introduced 

Wiener index to demonstrate correlations between physico-chemical properties of organic compounds of molecular 

graphs. The Wiener number is sum of distances between all unordered pairs of vertices of a simple graph G. 

Also, for this topological index, the Hosoya polynomial was introduced by H. Hosoya, in 1988 [2]. The Wiener 

index W(G) and its polynomial (Hosoya) H(G,x) are define as follow: 

   
  v V G V G

1
,

2 u

W G d v u
 

    
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H G x x
 

    

Another based structure descriptors is the “molecular topological index” (Schultz index) was introduced by      

Harry P. Schultz in 1989 [3] and the Modified Schultz index was defined by S. Klavžar and I. Gutman in 1997 [4].  

The Schultz index is defined as: 

 
 {u,v} V G

1
G ( ) ( , )

2
u vSc d d d u v



 
 

where du and dv are degrees of vertices u and v. 

And the Modified Schultz polynomial of G is defined as: 

 
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Also for these One of the important, we have two important polynomials “Schultz polynomial“ and “Modified 

Schultz polynomial”. Schultz and Modified Schultz polynomials of G are defined respectively as: 
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These based structure descriptors and their polynomials studied and computed in many papers [3-15].  

In this paper, we focus on the structure of first member of Polycyclic Aromatic Hydrocarbons (PAHs), which called 

Bezene molecules. And formulas of its Hosoya, Schultz, Modified Schultz polynomials and their topological indices are 

determined for the first time.  

 

Results and Discussion 

In this section we compute Hosoya, Schultz and Modified Schultz polynomials, Wiener, Schultz and Modified Schultz 

indices of first members of Polycyclic Aromatic Hydrocarbons molecules, which called Benzene PAH1 in Theorem1. 

Polycyclic Aromatic Hydrocarbons PAHn is a family of hydrocarbon molecules, such that its structure is consisting 

of cycles with length six (Benzene).  

In Refs [16-29] some properties and more historical details of this family of hydrocarbon molecules are studed. Also 

polycyclic aromatic hydrocarbons PAHn family are very similar properties to one of famous family of Benzenoid 

system (Circumcoronene Homologous Series of Benzenoid Hk). The properties and applications of Benzenoid 

system are presented in many papers; reader can see references [30-43]. 

 

Theorem 1. Let PAH1 be the first members of Polycyclic Aromatic Hydrocarbons (PAHs): “Benzene molecules”. 

Then Hosoya, Schultz and Modified Schultz polynomials of PAH1 are equal to 

 H(PAH1,x)=12x
1
+18x

2
+21x

3
+12x

4
+3x

5
 

 SC(PAH1,x)=60x
1
+96x

2
+78x

3
+36x

4
+6x

5
 

 SC
*
(PAH1,x)=72x

1
+180x

2
+69x

3
+24x

4+
3x

5
 

And also the following topological indices of Benzene PAH1 are calculated by formulas:  

 Wiener index : W(PAH1)=164 

 Schultz index : SC(PAH1)=660 

 Modified Schultz index : SC
*
(PAH1)=750 

 

Before prove the main theorem, we need the following denotations.  

Denotation 1. Let d(u,v)=i is distance between vertices u and v of G. Then,  ( , ) | , ( ), ( , )iD u v u v V G d u v i    and 

we denoted the size of Di by d(G,i). Thus the diameter d(G) is the longest topological distance in G.  
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Figure 1. First member of of Polycyclic Aromatic Hydrocarbons (PAHs): “Benzene molecules” 

Proof of Theorem 1: Let G=PAH1 be the Benzene (frist member of the polycyclic aromatic hydrocarbon family) 

with six carbon (C) and six hydrogen (H) atoms. Obviously we have the  12

2
=66 distinct shortest path between 

vertices/atoms u and v of G. So, from Figure 1, there are distances from one to five, for every vertices u,vV(G).  

In other words, , ( ), ( , ) {1,2,3,4,5}u v V G d u v     and obviously |D1|+|D2|+|D3|+|D4|+|D5|=66. So, we will 

have five partitions for proof. 

I. If d(u,v)=1, then |D1|=12 and is equal to |E(PAH1)|. So, we have three subsets of it.  

I-1. For six carbon (C) atoms: |D1(C)|=|{(u,v)| u,vV(PAH1), d(u,v)=1 & du+dv=6, du×dv=9}|=6. Therefore, we 

have three terms 6x
1
, 36x

1
, 54x

1 
of the Hosoya, Schultz and Modified Schultz polynomials, respectively.  

I-2. For six hydrogen (H) atoms: |D1(H)|=|{(u,v)| u,vV(PAH1), d(u,v)=1 & du+dv=4, du×dv=3}|=6. So, we have 

three sentences 6x
1
, 24x

1
 and 18x

1
 of the Hosoya, Schultz and Modified Schultz polynomials, respectively.  

In general, we have three terms 12x
1
, 60x

1
 and 72x

1
 for of the above polynomials, respectively.  

II. If d(u, v)=2, then |D2|=2×6CH+1×6CC=18 and similarly, we have  

II-1. For carbon atoms: |D2(C)|=|{(u,v)| u,vV(PAH1), d(u,v)=2 & du+dv=6, du×dv=9}|=12. Hence, we have three 

terms 12x
2
, 72x

2
, 108x

2 
of the Hosoya, Schultz and Modified Schultz polynomials, respectively. 

II-2. For hydrogen atoms: |D2(H)|=|{(u,v)| u,vV(PAH1), d(u,v)=2 & du+dv=4, du×dv=3}|=6. Hence, we have three 

terms 6x
2
, 24x

2
, 18x

2 
of these above polynomials, respectively. 

So generally, the second term of the Hosoya, Schultz and Modified Schultz polynomials are 18x
2
, 96x

2
 and 180x

2
, 

respectively. 

  III. If d(u, v)=3, then |D3|=1×6HH+2×6CH+3CC=21 and so, we have three subsets of it.  

III-1. For carbon atoms: |D3(C)|=|{(u,v)|u,vV(PAH1), d(u,v)=3 & du+dv=6, du×dv=9}|=3 and we have three terms 

3x
3
, 18x

3
, 27x

3
of the Hosoya, Schultz and Modified Schultz polynomials, respectively. 

 III-2. For hydrogen (H) atoms: |D3(H)|=|{(u,v)|u,vV(PAH1), d(u,v)=3 & du+dv=2, du×dv=1}|=6. So, we have 

three sentences 6x
3
, 12x

3
 and 6x

3
 of the Hosoya, Schultz and Modified Schultz polynomials, respectively.  

Benzene                 

C6H6 
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III-3. Finally for twelve paths between carbon and hydrogen atoms as distance 3, we have three terms 12x
3
, 48x

3
, 

36x
3 
for the Hosoya polynomial, Schultz polynomial and Modified Schultz polynomial, respectively.  

And generally, the thired sentence of the above polynomials are equale to 21x
3
, 78x

3
 and 69x

3
, respectively.  

IV- If d(u,v)=4, then |D4|=1×6HH+6CH=9 and we have two subsets of D4 as  

IV-1. For hydrogen (H) atoms: |D4(H)|=|{(u,v)|u,vV(PAH1), d(u,v)=4 & du+dv=2, du×dv=1}|=6. Thus 6x
4
, 12x

4
 

and 6x
4
 are in the Hosoya, Schultz and Modified Schultz polynomials, respectively.  

IV-2. Similarly, for carbon atoms: |D4(C)|=|{(u,v)|u,vV(PAH1), d(u,v)=4 & du+dv=4, du×dv=3}|=6 and we have 

three terms 6x
4
, 24x

4
 and 18x

4
, respectively. 

Generally, we will have tow sentences 36x
4
 and 24x

4 
of the Schultz and Modified Schultz polynomials and 12x

4 
of 

the Hosoya polynomial.  

V- If d(u,v)=5, then |D5|=|D5(H)|=|{(u,v)|u,vV(PAH1), d(u,v)=5 & du+dv=2, du×dv=1}|=3 and obviusly 

we have three terms 3x
5
, 6x

5
 and 3x

5 
for the Hosoya, Schultz and Modified Schultz polynomials of PAH1, 

respectively. 

Now, by enumerate all distinct shortest path between vertices/atoms u,v of Benzene PAH1, its Hosoya polynomial is 

equal to: 

H(PAH1,x)=12x
1
+18x

2
+21x

3
+12x

4
+3x

5 

And the Wiener index of Benzene PAH1 is as follow: 

W(PAH1)=
 1,H PAH x

x




=12×1+18×2+21×3+12×4+3×5=164. 

The Schultz polynomial of PAH1 is equal to: 

SC(PAH1,x)=60x
1
+96x

2
+78x

3
+36x

4
+6x

5
 

And the Schultz index of PAH1 is equal to: 

SC(PAH1)=
 1,SC PAH x

x




=60×1+96×2+78×3+36×4+6×5=660 

Finally, the Modified Schultz polynomial and Modified Schultz index of PAH1 are equale to: 

SC
*
(PAH1,x)=72x

1
+180x

2
+69x

3
+24x

4+
3x

5
 

And also,  

SC
*
(PAH1)=

 *

1,SC PAH x

x




=72×1+180×2+69×3+24×4+3×5=750 

 Here, we complete the proof of Theorem 1. □ 
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